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ABSTRACT : Arsenic is a toxic metalloid that exists ubiquitously in the environment, and affects global health problems due 
to its carcinogenicity. In most populations, the main source of arsenic exposure is the drinking water. In drinking water, 
chronic exposure to arsenic is associated with increased risks of various cancers including those of skin, lung, bladder, and 
liver, as well as numerous other non-cancer diseases including gastrointestinal and cardiovascular diseases, diabetes, and 
neurologic and cognitive problems. Recent emerging evidences suggest that arsenic exposure affects the reproductive and 
developmental toxicity. Prenatal exposure to inorganic arsenic causes adverse pregnancy outcomes and children’s health 
problems. Some epidemiological studies have reported that arsenic exposure induces premature delivery, spontaneous 
abortion, and stillbirth. In animal studies, inorganic arsenic also causes fetal malformation, growth retardation, and fetal death. 
These toxic effects depend on dose, route and gestation periods of arsenic exposure. In males, inorganic arsenic causes 
reproductive dysfunctions including reductions of the testis weights, accessory sex organs weights, and epididymal sperm 
counts. In addition, inorganic arsenic exposure also induces alterations of spermatogenesis, reductions of testosterone and 
gonadotrophins, and disruptions of steroidogenesis. However, the reproductive and developmental problems following arsenic 
exposure are poorly understood, and the molecular mechanism of arsenic-induced reproductive toxicity remains unclear. Thus, 
we further investigated several possible mechanisms underlying arsenic-induced reproductive toxicity. 
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INTRODUCTION 

Arsenic is a naturally occurring element that exists ubi-

quitously in the environment in both organic and inorganic 

forms combined with other elements such as oxygen, chlorine, 

and sulfur, as well as carbon and hydrogen (Cullen and 

Reimer, 1989; WHO, 2000; IARC, 2004). It is classified 

chemically as a metalloid, having properties intermediate 

between a metal and a nonmetal; however, it is frequently 

referred to as a metal (IARC, 1980). Elemental arsenic is 

the 20th most common in the earth’s crust, and is emitted to 

the environment as a result of volcanic and industrial 

activities. Mining, smelting of non-ferrous metals and burning 

of fossil fuels are the major anthropogenic sources of 

arsenic contamination of air, water, and soil. Arsenic and 

arsenic compounds are used in pharmaceuticals, wood pre-

servatives, agricultural chemicals (e.g. pesticides, insecticides, 

and herbicides), and applications in the mining, meta-

llurgical, glass-making, and semiconductor industries (Mandal, 

2002). Especially, the historical usage of arsenic-containing 

pesticides and wood preservatives led to contamination of 

the agricultural land and groundwater (WHO, 2001). Human 
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exposure to arsenic has become a major global health 

problem because the worldwide contaminations and adverse 

health effects. In most populations, the main source of 

arsenic exposure is the drinking water (NRC, 1999, 2001; 

Smith et al., 2002; Watanabe et al., 2003). In drinking 

water, the current maximum contamination levels of arsenic 

were lowered from 50 μg/L to 10 μg/L by USEPA and 

WHO (IARC, 2004). Arsenic in drinking water is mainly 

inorganic arsenic and more harmful than in food such as 

grains and vegetables (Akter et al., 2005). Moreover, inorganic 

arsenic is more toxic than organic arsenic and can exist in 

two major oxidation states: a trivalent form, arsenite (As3+), 

and a pentavalent form, arsenate (As5+). Biologically, 

arsenite is 2~10-fold more active and toxic than arsenate 

(Kosentt, 1994). Of the inorganic arsenic compounds, arsenic 

trioxide (As2O3), sodium arsenite (NaAsO2) and arsenic 

trichloride (AsCl3) are the most common trivalent compounds, 

and arsenic pentoxide (As2O5), arsenic acid (AsH3O4) and 

arsenates [e.g. sodium arsenate (Na2HAsO4), lead arsenate 

(PbHAsO4) and calcium arsenate (As2Ca3O8)] are most 

common pentavalent compounds. 

The toxic effects of arsenic that are of most concern to 

humans are those that occur from chronic low-level exposure. 

Epidemiological studies have indicated that chronic exposure 

to arsenic is associated with increased risks of various 

cancers, including those of the skin, lung, bladder, kidney, 

and liver, as well as numerous other non-cancer illnesses 

including vascular and cardiovascular disease, diabetes, 

reproductive and developmental problems, and neurologic 

and cognitive problems (Abernathy et al., 2003’ NRC 1999, 

2001; Wasserman et al., 2004; Watanabe et al., 2003). Con-

versely, arsenic has been considered as an effective chemo- 

therapeutic agent in the treatment of certain human cancers 

(Douer & Tallman, 2005). Among arsenic compounds, arsenic 

trioxide (As2O3) has successfully been employed in the 

treatment of acute promyelocytic leukemia (APL) (Soignet et 

al., 1998). It has also been shown that As2O3 efficiently 

induces apoptosis in malignant APL cells in vitro (Hu et al., 

1999). These observations has been confirmed that As2O3 can 

induce apoptosis in other leukemia cells and solid tumor 

cells, including gastric cancer cells, neuroblastoma cells, 

and prostate and ovarian carcinomas (Zhang el al., 1999; 

Uslu et al., 2000). However, arsenic is commonly regarded 

as a potent carcinogen that can induce the formation of 

various types of solid tumors (Smith et al., 1992; Liu & 

Waalkes, 2008). Our previously study demonstrated that 

As2O3 effectively provokes cytotoxicity and apoptotic cell 

death in mouse testicular Sertoli cells in vitro (Kim et al., 

2011). These investigations indicates that the male repro-

ductive toxicity of arsenic may be directly associated with 

damage of testicular cells.  

In addition, various experimental models have been 

developed to understand how arsenic exposure causes these 

diverse disease outcomes. However, the reproductive and 

developmental toxicity of arsenic is poorly understood, and 

specific relationships between experimental and human ex-

posures are not established. Several epidemiologic studies 

have reported that arsenic exposure in utero increased 

spontaneous abortion and stillbirth and decreased birth 

weight (Ihrig et al., 1998; Ahmad et al., 2001; Milton et al., 

2005). However, these studies lack detailed information 

about exact effects of maternal arsenic exposure. The repro-

ductive and developmental toxicity of arsenic have pri-

marily been documented through murine studies, suggesting 

arsenic as a risk to the developing fetus. In animals, some 

experimental studies have reported that arsenic intoxication is 

associated with spermatotoxicity (Waalkes et al., 2003; 

Pant et al., 2004), inhibition of testicular steroidogenesis 

and reduction of the weight of the testes and accessory sex 

organs (Sarker et al., 2003). Arsenic exposure also has 

been associated with inhibition of ovarian steroidogenesis 

and gonadotrophins secretion (Chattopadhyay et al., 1999), 

elevation of adrenocortical steroidogenesis and plasma 

corticosterone level (Ghosh et al., 1999), as well as with 
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severe metabolic disorders such as diabetes in humans 

(Tseng et al., 2002). However, the actual molecular events 

resulting in reproductive and developmental toxicity from 

exposure of arsenic remain unclear.  

The purpose of this paper is to review and summarize 

the major scientific developments on the topic of repro-

ductive and developmental toxicity associated with arsenic 

exposure, integrating evidence from epidemiological and 

experimental studies. 

 

ARSENIC EXPOSURE TO HUMAN 

Arsenic is a major global health concern throughout the 

world widely based on its carcinogenic potential after 

occupational or environmental exposure (IARC, 1987; NRC, 

1999). Arsenic is commonly present in air, water, and soil 

and could find their routes into the human body through 

inhalation, ingestion and skin absorption. The primary 

route of arsenic exposure for the most population is via the 

ingestion of contaminated food or water. Inhalation or skin 

absorption of arsenic from contaminated sources is a minor 

exposure route for the general population (ATSDR 2007). 

Most ingested and inhaled arsenic is well absorbed through 

the gastrointestinal tract and lung into the blood stream. 

Arsenic enters into the human body through these routes, 

and is distributed in a large number of organs including the 

lung, liver, spleen, kidney, intestine, skin, and vascular and 

lymphatic systems, as well as reproductive and nervous 

systems (Hunter et al., 1942; ATSDR, 2007). After absorption 

through lung and the gastrointestinal tract, 95 to 99% of 

the arsenic is located in erythrocytes, bound to the globin 

of hemoglobin and is then transported to the other parts of 

the body. About 70% of the arsenic is excreted mainly 

through urine. Most arsenic absorbed into the body is 

converted by the liver to less toxic methylated form that is 

efficiently excreted in the urine (WHO, 1981; ATSDR, 1989). 

Arsenic is a multi-site carcinogen in humans, causing 

tumors in a variety of tissues including lung, skin, liver, 

kidney, and bladder, as well as uterus and prostate (NRC, 

1999; Waalkes et al., 2000, 2003). Acute arsenic exposure 

may cause gastrointestinal tract disorders (Goebl et al., 

1990), whereas chronic exposure may exert degenerative, 

inflammatory, and neoplastic changes of the respiratory, 

hematopoietic, cardiovascular, and nervous systems (Naiger 

& Osweiler, 1989). Although epidemiological data have 

firmly established arsenic to be a human carcinogen, animal 

studies are less well defined. Most laboratory animals 

appear to be substantially less susceptible to arsenic than 

humans (Naqvi et al., 1994; Huff et al., 2000). It has been 

reported that chronic oral exposure to inorganic arsenic 

(0.05-0.1 mg/kg/day) causes neurological and hemato-

logical toxicity in humans but not in monkeys, dogs, and 

rats exposed to arsenite or arsenate at doses of 0.72 to 2.8 

mg/kg/day (Byron et al., 1967). 

 

BIOCHEMICAL METABOLISM OF 
ARSENICALS 

Exposure of humans to inorganic arsenic results in the 

urinary excretion of inorganic arsenic and two major methy-

lated metabolites, methyl arsenic and dimethyl arsenic 

(Crecelius, 1977; Smith et al., 1977; Yamauchi & Yamamura, 

1979). In many organisms, including humans, inorganic 

arsenic is reduced in the blood from pentavalent arsenate 

(As5+) to trivalent arsenite (As3+), then taken up by hepatocytes 

and oxidatively methylated to monomethyl arsenic acid 

(MMA) and then to dimethyl arsenic acid (DMA) (Fig. 1) 

(Aposhian, 1997; Healy et al., 1998; Pott et al., 2001; Thomas 

et al., 2001). The reduction is facilitated by reductases and the 

reduced form of glutathione (GSH) along with possibly 

other thiols as electron donors. Oxidative methylation is carried 

out by methyltransferases, and S-adenosylme-thionine (SAM) 

serves as the main methyl donor (Drobna et al., 2005). 

Inorganic arsenic in water is abundant in the form of 

arsenate; it is negatively charged at physiological pH and 

slowly taken up by cells (Cohen et al., 2006). Arsenate is  
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Fig. 1. Metabolic pathway of inorganic arsenic. Arsenate 

(As5+) is reduced by As5+ reductase with glutathione 
(GSH) to yield arsenite (As3+) and glutathione 
disulfide (GSSG). As3+ is converted to pentavalent 
monomethylarsonic acid (MMA5+), a reaction catalyzed 
by arsenic-3-methyltransferase (AS3MT), with S-
adenosylmethione (SAM) serving as the methyl 
donor; in the process, SAM is hydrolyzed to S-
adenosyl homocysteine (SAH). After the reduction 
of MMA5+ to MMA3+, a second methylation step 
result in the synthesis of dimethylarsinic acid (DMA5+), 
and then it is reduced to DMA3+. 

rapidly converted to arsenite in vivo (Vahter and Envall, 

1983; Vahter & Marafente, 1985) which is taken up by cells 

much more quickly than arsenate (Tseng, 2009). Methylation 

of arsenicals facilitates their excretion from the cell and 

therefore was long considered a detoxification process, but 

recent evidence indicates that monomethylated and dime-

thylated arsenicals have many cyto- and genotoxic effects 

including increased oxidative stress (Kligerman & Tennant, 

2007), chromosomal aberrations, and oxidative DNA damage 

(Schwerdtle et al., 2003; Dopp et al., 2004, 2005). Methylated 

trivalent metabolites are highly reactive and are more 

potent inhibitors of GSH reductase and thioredoxin reductase 

compared with arsenite or pentavalent metabolites (Styblo 

et al., 1997; Lin et al., 1999). Thioredoxin reductases catalyzes 

the NADPH-dependent reduction of the disulfide bond in 

oxidized thioredoxin, which is a critical antioxidant enzyme  

controlling the cellular redox balance (Rossman, 2003).  

More importantly, arsenic can pass through the placenta 

to the developing fetus. In experimental animals, prenatal 

exposure to inorganic arsenic has resulted in arsenic accu-

mulation in fetuses, including fetal brain (Rodriguez et al., 

2002; Miyazaki et al., 2005), and detection of monomethyl 

and dimethyl arsenicals in fetuses (Hall et al., 2007). In 

humans, dimethylarsinic acid (DMA5+) accounts for nearly 

90% of all detected arsenic in the blood plasma of both the 

newborns and their mothers (Concha et al., 1998). This 

form of arsenic accounts for 60 to 70% of the total detected 

arsenic in urine of the general population, whereas urine 

from pregnant women contained more than 90% arsenic as 

DMA5+. This suggested that arsenic methylation may be 

increased during pregnancy and that DMA5+ is the major 

form of arsenic transferred to the fetus. 

 

DEVELOPMENTAL TOXICITY OF 
ARSENIC 

The elevated evidence now suggests that arsenic exposure 

in utero also poses health risks to the developing fetus 

(Vahter, 2009). Various epidemiological studies have found 

significant associations between prenatal arsenic exposure 

and adverse infant outcomes, such as infant mortality, low 

birth weight, and birth defects (Ahmad et al., 2001; Milton 

et al., 2005; Rahman et al., 2007). These health problems 

were most evident in individuals exposed to high-level 

arsenic (IARC, 2004). During pregnancy, high-level exposure 

to arsenic in drinking water causes pregnancy complica-

tions, including fetal loss and premature delivery (Chakraborti 

et al., 2003), and low-level exposure to arsenic affects uterus 

and placental growth results in progeny birth weight (Hopenhayn 

et al., 2003; Rahman et al., 2009). Conclusions from these 

epidemiological studies are further supported by results 

from animal models (Ferm and Carpenter, 1968; Hood and 

Bishop, 1972). Several cross-sectional studies have been 

reported that woman exposure of chronic arsenic in drinking 
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water increases adverse pregnancy outcomes including 

premature delivery, spontaneous abortion, stillbirth and 

neonatal death in Bangladesh (Milton et al., 2005), northeastern 

Taiwan (Yang et al., 2003), and Chile (Hopenhayn-Rich et 

al., 2000). Despite the strong association between arsenic 

exposure and a range of child health concerns, the me-

chanisms by which arsenic elicits these effects remain 

elusive (Fry et al., 2007; Vahter, 2009; Ahmed et al., 2011). 

Arsenic is a well-known teratogen and developmental 

toxicant in many animal models. Various animal studies 

have shown that arsenic can produce developmental toxicity, 

including malformation, growth retardation and fetal death 

(Tabocova et al., 1996; Golub et al., 1998). Furthermore, 

developmental toxicity critically depends on dose, route 

and gestation day following the arsenic exposure (Golub et 

al., 1998). Fetal malformations were only reported when 

pregnant rats and mice were intravenous (i.v.) and intra-

peritoneal (i.p.) injected with inorganic arsenic at early 

gestation (Stump et al., 1999; DeSesso, 2001). Maternal 

inhalation or oral ingestion of inorganic arsenic affected 

fetal development and behavior, but did not cause malfor-

mations (Holson et al., 1999; Stump et al., 1999; DeSesso, 

2001; Chattopadhyay et al., 2002). The maternal circulation 

levels of arsenicals are influenced by absorption rates. In 

oral exposure, arsenic is absorbed into the blood from 

intestines. It is then transported to the liver and may 

undergo first-pass metabolism prior to being delivered to 

the uterus. Intraperitoneal injections, on the other hand, 

allow arsenic to be taken up by blood vessels directly and 

may bypass first-pass metabolism (Stump et al., 1999; 

DeSesso, 2001). In pregnant rats, the maternal blood and 

embryonic arsenic concentration from i.p. injected mother 

was significantly higher than those from the orally exposed 

mother (Hood et al., 1987; Holson et al., 2000a). Inhalation is 

the least effective means of increasing maternal or em-

bryonic arsenic concentrations, compared to i.p. and i.v. 

injections and oral exposure (Holson et al., 2000a). Intra-

peritoneal injection of 45 mg/kg sodium arsenate in Swiss 

mice during gestation day (GD) 8 induced fetal renal and 

skeletal malformations without affecting maternal weights 

(Fascineli et al., 2002). However, oral exposure to arsenic 

did not cause neural tube defects, even at maternally toxic 

dose levels. Oral gavage with high-dose arsenic trioxide 

(10 mg/kg/day) in female Crl:CD(SD)BR rats during GD 

14 to 19 decreased fetal weights, but did not induce changes 

in mating index, fertility index, implantation, or fetal 

malformation (Holson et al., 2000b). Nevertheless, dime-

thylarsinic acid (DMA5+), an arsenic metabolite, given to 

pregnant mice and rats by oral gavage caused develop-

mental toxicity (Rogers et al., 1981; Chernoff et al., 1990). 

CD-1 mice were orally gavaged with DMA5+ at 200~600 

mg/kg/day during GD 7 to 16. These mice showed lower 

maternal weight gain and fetal weight at 200 mg/kg/day, 

and a higher incidence of cleft palate at 400 mg/kg/day. 

Similarly, during GD 7 to 16, CD rats were orally gavaged 

with DMA5+ at 7.5 to 60 mg/kg/day (Rogers et al., 1981). 

Maternal weight gain and fetal weight were decreased at 

>40 mg/kg/day. Fetal mortality was increased at 50 or 60 

mg/kg/day, but no fetal gross malformations were seen in 

these rats. In a later study, DMA5+ was given to pregnant 

Sprague-Dawley (SD) rats at 40 mg/kg/day by oral gavage 

during GD 6 to 15. This treatment did not induce maternal 

weight reduction or maternal lethality, but decreased fetal 

weight (Chernoff et al., 1990). Furthermore, postnatal deve-

lopmental changes were observed when arsenic was given 

in the drinking water to pregnant and lactating rats and 

continually to the newborns (Rodriguez et al. 2002). Ingestion 

of drinking water with sodium arsenite (36.7 mg/L) in SD 

rats during GD 15 to postnatal day (PND) 16 induced deve-

lopmental indices including delayed pinna detachement on 

PND 12 and early eye opening on PND 14 in more litters, 

compared to the untreated controls (Rodriguez et al. 2002). 

In physiological development, pinna detachment occurs 

between PND 3 and 4, and eye opening is observed on 
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PND 16. These data indicate that arsenic induces an asynchrony 

of the maturational processes during postnatal develop-

ment. Overall, it is assumed that prenatal exposure to arsenic 

may cause adverse pregnancy outcomes and children’s 

health problem, however, the exact mechanism underlying 

arsenic-induced developmental toxicity and a direct relation-

ship with reproductive toxicity remains to be elucidated. 

 

REPRODUCTIVE TOXICITY OF ARSENIC 

In males, arsenic may induce gonad dysfunction through 

declined testosterone synthesis, apoptosis and necrosis 

(Davila-Esqueda et al., 2012; Shen et al., 2013). However, 

the male reproductive dysfunction of arsenic exposure on 

human health is not well established. Recently, few epide-

miologic studies have shown that arsenic exposure signifi-

cantly causes infertility and low sperm quality, as well as 

erectile dysfunction in men (Nie et al., 2006; Hsieh et al., 

2008; Meeker et al., 2010). 

Several experimental studies have been demonstrated 

that significant accumulation of arsenic in testes and acce-

ssory sex organs, such as epididymis, seminal vesicle, and 

prostate gland (Danielsson et al., 1984; Pant et al., 2001). 

Male mice exposed to sodium arsenite at 20 or 40 mg/L for 

5 weeks in drinking water showed decreased epididymal 

sperm counts and testicular weight (Chang et al., 2007). 

Similarly, in male rats, daily exposure to sodium arsenite 

at 5 mg/L for 4 weeks in drinking water also resulted in 

decreased testicular weights, accessory sex organ weights, 

and epididymal sperm counts, as well as extensive degeneration 

of a wide variety of germ cells at stage VII of the spemato-

genic cycle (Jana et al., 2006). Furthermore, arsenic-exposed 

mice exhibited dose-dependent gradual reductions in semini-

ferous tubular diameter and various gametogenic cell populations, 

such as resting spermatocyte, pachytene spermatocyte, and 

elongated spermatid (Sanghamitra et al., 2008). These results 

indicated that arsenic exposure may inhibit the spermato- 

 

genesis and sperm development. 

In addition, arsenic exposure also reduced plasma levels 

of testosterone and gonadotropin in male mice and rats 

(Sarkar et al.. 2003; Chinoy et al., 2004; Pant et al.. 2004). 

Sodium arsenite was given to Wister rat via i.p. injections 

at 4, 5, or 6 mg/kg/day for 26 days. At 5 and 6 mg/kg/day, 

relative testicular weight, accessory sex organ weights and 

epididymal sperm counts were decreased. Moreover, sodium 

arsenite-treated rats were accompanied by decreases of 

plasma concentrations of luteinizing hormone (LH), follicle- 

stimulating hormone (FSH), and testosterone after arsenic 

exposure. These suggested that arsenic may target on the 

brain and/or pituitary as well as directly on the germ cells. 

However, the molecular mechanisms underlying arsenic-

induced male reproductive dysfunctions are poorly understood. 

There are several possible mechanisms for the anti-

gonadal activities of toxic chemicals. They might exert a 

direct inhibitory action on the testis, or they might affect 

the hypothalamic-pituitary axis causing changes in plasma 

concentrations of LH and FSH. Reduction of plasma LH 

might impair Leydig cell function and result in a consequent 

reduction in testosterone production. Testosterone is a pre-

requisite for normal spermatogenesis, while FSH is also 

required for normal testicular function and spermatogenesis 

(Fig. 2) (Jana et al., 2006). On the other hand, a possible 

mechanism for decreased sperm motility might be associated 

with a direct binding of arsenic to sperm (Uckun et al., 

2002). Nuclear chromatins of sperm have large amounts of 

thiol-rich protamines, and the sperm flagellum is rich in 

thiols. The thiol groups in sperm nuclear or flagellum 

provide binding sites for arsenic. Another possible cause of 

the reduction in serum LH, FSH, and testosterone levels 

could be high serum corticosterone levels. High corticosterone 

can reduce serum gonadotrophins and testosterone levels 

(Vreeburg et al. 1988; Hardy et al. 2005), and has been 

reported in sodium arsenite-treated rats (Biswas et al., 1994). 

In addition to spermatogenesis, in mice, cholesterol meta- 
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Fig. 2. Hormonal controls of spermatogenesis in the 

hypothalamic-pituitary-testicular axis. Luteinizing 
hormone (LH) acts directly upon the Leydig cells 
to stimulate testosterone (T) production. T and follicle- 
stimulating hormone (FSH) act upon the Sertoli 
cells within seminiferous epithelium to support deve-
lopment and maturation of germ cells. 

bolism and testosterone production were affected by arsenic 

exposure (Chinoy et al., 2004). Male mice orally exposed 

to arsenic trioxide (As2O3) at 0.5 mg/kg for 30 days showed 

increased cholesterol levels and decreased expression of 

3β-hydroxysteroid dehydrogenase (HSD) and 17β-HSD, 

two important regulatory enzyme of steroidogenesis. In the 

testis, cholesterol is a precursor for testosterone synthesis 

(Kabbaj et al., 2003). 3β-HSD mainly converts pregnenolone 

to progesterone, and 17β-HSD converts androstenedione 

into testosterone. In the seminiferous tubules in the testis, 

cholesterol in the membrane of developing cells influences 

the gamete’s fertility (Kabbaj et al., 2003). These data 

suggest that low plasma level of testosterone after arsenic 

exposure may be due to low enzymatic conversion by the 

decreases of 3β-HSD and 17β-HSD, rather than a lack of 

the synthetic precursor cholesterol. 

 
Fig. 3. Possible mechanisms involved in arsenic-induced 

male reproductive toxicity. Arsenic may inhibit 
spermatogenesis and sperm maturation following 
certain key molecular mechanisms including reductions 
of testosterone and gonadotrophins LH and FSH, 
disruptions of steroidogenic enzymes 3β-HSD and 
17β-HSD, negative regulations of LH and FSH by 
increased corticosterone, decreases of sperm motility 
and viability following the direct binding of arsenic 
(As) to sperm, and direct damages or apoptosis of 
testicular component germ cells or Sertoli cells. 
The dotted lines represent negative regulations of 
the general spermatogenesis following arsenic exposure. 
LH, luteinizing hormone; FSH, follicle-stimulating 
hormones; 3β-HSD, 3β-hydroxysteroid dehydrogenase; 
17β-HSD, 3β-hydroxysteroid dehydrogenase. 

Arsenic exposure may induce cell death or apoptosis in 

the testicular germ cells or somatic Sertoli cells in vitro 

(Celino et al., 2009; Kim et al., 2011). In Japanese eel, 

low-dose (0.1~1 µM) of arsenic inhibits spermatogenesis 

via steroidogenesis suppression, while high-dose (100 µM) 

of arsenic induces oxidative stress-mediated germ cell 
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apoptosis (Celino et al., 2009). We previously showed that 

arsenic trioxide (As2O3) at 10 µM efficiently induces reactive 

oxygen species (ROS)-related cytotoxicity and apoptotic 

cell death in mouse TM4 Sertoli cells (Kim et al., 2011). 

The testicular Sertoli cells interact directly with developing 

germ cells throughout the process of spermatogenesis. These 

cells have an indispensable able in the development and 

movement of germ cells (Russell, 1993; Griswold, 1998). 

Thus, spermatogenic dysfunction of arsenic toxicity may be 

associated with direct damages of testicular component cells 

(Fig. 3). 

CONCLUSION 

Arsenic is an important environmental toxicant that affects 

the reproductive and developmental toxicity. These toxic 

effects are influenced by the forms, sources, and routes, as 

well as doses and periods of arsenic exposure. In vivo studies 

demonstrated that inorganic arsenic, such as sodium arsenite, 

arsenic trioxide, and dimethyl arsinic acid, an arsenic 

metabolite, causes reproductive and developmental toxicity. 

Prenatal exposure to inorganic arsenic by only i.p. or i.v. 

injection routes causes fetal malformation; in contrast, oral 

and inhalational exposure to inorganic arsenic affects fetal 

development, including growth retardation and fetal death. 

In drinking water, oral exposure to inorganic arsenic causes 

dysfunctions of spermatogenesis, reductions of testosterone 

and gonadotrophins, and disruptions of steroidogenesis. 

However, the reproductive and developmental toxicity of 

arsenic is poorly understood, and the molecular mechanism of 

arsenic-induced reproductive toxicity remains unclear. Therefore, 

we further investigated some of the possible mechanisms 

that are affected by arsenic causing reproductive toxicity. 

The crucial mechanisms of arsenic-induced reproductive 

toxicity may be associated with hormonal regulation and 

function, binding to sperm, and regulation of steroidogenesis, 

as well as direct effects of testicular component cells. 
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