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Abstract
Germline cells are specified early in embryogenesis and are encapsulated by somatic cells to 
form the gonads (testis or ovary). This development requires genes with expression restricted 
to germline cells, such as the DEAD-box RNA helicase Vasa, an evolutionarily conserved 
protein exclusively expressed in the germline of the testis. However, the mechanisms 
underlying germline-specific expression remain poorly understood. To identify microRNAs 
that function in the somatic cells of the testis, we employed the binary Gal4/UAS expression 
system, which enables the expression of UAS-microRNA sponges in somatic cells driven by 
somatic Gal4 drivers. The screening identified the miR-932 sponge as a regulator. Testes 
with hub-specific Gal4 driven expression of the UAS-miR-932 sponge exhibit ectopic Vasa 
expression in the hub cells. Thus, our findings suggest that miR-932 in the somatic hub cells 
prevents Vasa expression in these cells.
Keywords:  Vasa, Germline, Somatic, Drosophila, miR-932, MicroRNA

INTRODUCTION

The soma/germline distinction is essential to the survival of all animal species; in the absence of germline 
cells, sperm and eggs cannot be produced, leading to termination of the species. In Drosophila, primordial 
germ cells (PGCs) are specified during early embryogenesis in the germ-plasm at the posterior end of 
the embryo (Lehmann, 2016; Dehghani & Lasko, 2017). Initially, they migrate anteriorly and become 
encapsulated with somatic cells to form embryonic gonads (Boyle & DiNardo, 1995; Rongo et al., 1997; 
Okegbe & DiNardo, 2011; Anllo et al., 2019; Anllo & DiNardo, 2022). Later, the PGCs differentiate 
into germline stem cells (GSCs) while the gonadal somatic cells differentiate into hub and cyst stem cells 
(CySCs), forming the adult testis (DiNardo et al., 2011; Losick et al., 2011). At the tip of the adult testis 
is the hub, comprised of ~10 cells, to which are attached intermingled CySCs and GSCs (Yamashita et 
al., 2003, 2005; Davies & Fuller, 2008). The hub secretes signaling molecules including Unpaired (Upd), 
Bone morphogenetic protein, and Hedgehog, which stimulate CySCs and GSCs for hub attachment, 
asymmetric cell division, and stemness maintenance (Kiger et al., 2001; Tulina & Matunis, 2001; 
Leatherman & Dinardo, 2008, 2010; Amoyel et al., 2013). The CySCs produce cyst cells that encapsulate 
GSC-derived differentiating germ cells (de Cuevas & Matunis, 2011; Spradling et al., 2011). 

Germline-specific genes are exclusively expressed in the PGCs of embryos and the germline cells 
of adult gonads (Lehmann & Nüsslein-Volhard, 1991; Rongo et al., 1997; Slaidina & Lehmann, 2014; 
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Trcek & Lehmann, 2019). The mechanisms that restrict expression of germline genes are yet poorly 
understood. The evolutionarily conserved DEAD-box RNA helicase Vasa (also known as DDX4) 
is one such germline-specific gene, being expressed in germline cells from the early embryo to the 
late adult gonad (Lasko & Ashburner, 1990; Rongo et al., 1997; Van Doren et al., 1998; Wang et 
al., 2015; Jeske et al., 2017). In Drosophila, it is involved in germline specification in embryos and in 
GSC maintenance and differentiation in adults (Lasko, 2013; Dehghani & Lasko, 2017; Durdevic & 
Ephrussi, 2019; Adashev et al., 2024). Mechanistically, Vasa binds hundreds of mRNAs, is required 
for the enrichment of several hundred mRNAs at the posterior pole in embryos, and is involved in the 
translational regulation of selected mRNAs (Lasko, 2013; Kotov et al., 2024). In this communication, 
we report expression of a miR932 sponge to result in ectopic vasa expression in hub cells, revealing a 
microRNA-based mechanism regulating vasa expression in the adult testis. 

MATERIALS AND METHODS

1. Drosophila stocks and husbandry
Animals were maintained on a standard cornmeal diet (68 g dry yeast, 90 g sugar, 43 g cornmeal, 

9 g agar, 4.5 mL propionic acid, 1 g methyl-4-hydroxybenaoate per 1-liter water) at 25℃ and 40% 
relative humidity under 12-hour light/dark cycle conditions. All flies harboring esgts, upd ts>UAS-
miR.sponge were raised at 22℃ to restrict Gal4 unless otherwise noted. Flies were shifted to 29℃ 
for three days to inhibit Gal80ts and activate Gal4. 

The following lines were generous gifts from colleagues in the fly community: esgts driver refers to 
esg-Gal4, UAS-GFP/Cyo; tub-Gal80 

ts (Micchelli & Perrimon, 2006), and upd ts driver refers to upd-
Gal4; tubP-Gal80 

ts (Albert et al., 2018). The following lines were obtained from the Bloomington 
Drosophila Stock Center: C587-Gal4 (BL67747), UAS-mCherry.scramble.sponge (BL61501), UAS-
mCherry.miR-932.sponge (BL61439), and UAS-mCherry.miR-let7.sponge (BL61635). 

2. Immunohistochemistry
Testes were dissected in phosphate-buffered saline (PBS) and fixed in 4% paraformaldehyde 

in 1XPBS for 30 minutes at room temperature. Fixed samples were washed twice with 0.3% 
triton X-100 in 1XPBS (1XPBST) for 15 minutes at room temperature, then blocked with 5% 
normal goat serum in 1XPBST (blocking solution). Primary antibodies were diluted in blocking 
solution and incubated overnight at 4℃. Testes were washed twice with 1XPBST for 15 minutes 
each time and incubated with secondary antibodies for two hours at room temperature. After the 
incubation, the testes were again washed twice with 1XPBST for 15 minutes, then mounted in 
Fluoromount-G® (Southern Biotech, Birmingham, AL, USA) on a glass slide. Primary antibodies 
were rabbit anti-mCherry (PA5-34974, 1:200 Invitrogen, Waltham, MA, USA), rabbit anti-eGFP 
(CAB4211, 1:500 Invitrogen), rat anti-Vasa (760351, 1:400 Developmental Studies Hybridoma 
Bank, DSHB, Iowa, IA, USA), and mouse anti-FasIII (7G10, 1:30 DSHB). Secondary antibodies 
were as follows: Alexa Fluor 488-conjugated goat anti-rabbit (A11008, Invitrogen, diluted 
1:800), Alexa Fluor 488-conjugated goat anti-mouse (A11001, Invitrogen, 1:800), Alexa Fluor 
555-conjugated donkey anti-mouse (A31570, Invitrogen, 1:800), and Alexa Fluor 555-conjugated 
goat anti-rabbit (A21429, Invitrogen, 1:800). Images were taken with a Leica Application Suite X 
confocal microscope system and image analysis was performed using the Leica LAS X software.

RESULTS AND DISCUSSION

Vasa is expressed in germline cells, including GSCs, the goniablast (GB), and GB-derived 
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germline cells of the adult testis; conversely, it is not expressed in somatic cells of the adult testis, 
including hub cells, CySCs, and the cyst (Fig. 1A). To identify microRNAs functioning in the 
Drosophila adult testis, we employed the Gal4/UAS binary expression system (Brand & Perrimon, 
1993), which enables expression of UAS-transgenes under a tissue-specific Gal4 driver. This study 
used the temperature-sensitive somatic Gal4 driver termed esgts, which harbors esg-Gal4 (somatic-
Gal4) and tub-Gal80 

ts (tubulin promoter linked to a temperature-sensitive form of the Gal4 
inhibitor Gal80) (Micchelli & Perrimon, 2006). After a temperature shift from 25℃ to 29℃, 
which renders Gal80 nonfunctional, esgts can drive expression of UAS-transgenes in somatic cells 
(Fig. 1B). To knock down microRNAs, we employed UAS-microRNA sponges (Fulga et al., 
2015) which consist of the mRNA for mCherry with twenty concatenated copies of a sequence 
complementary to a microRNA inserted into its 3’UTR. These antisense sequences can sequester 
microRNAs, allowing expression of the transcripts the microRNAs would otherwise repress. 

Flies were reared at 22℃ for three days after eclosion, then shifted to 29℃ for three days. Testes 
were dissected out and immunostained with a hub-specific antibody (FasIII), germline-specific 
antibody (Vasa), and mCherry-specific antibody to label cells in which the Gal4 driver was active. 
Vasa was detected in germline cells of control and experimental testis (Fig. 2A–C). Vasa was not 

Fig. 1.   Cartoons depicting gene expression in the Drosophila testis tip. (A) Vasa is exclusively expressed 
in germline cells (red), and not in somatic cells (blue). (B–D) Gal4 drivers employed in this study. (B) 
The temperature-sensitive somatic cell driver esgts comprises esg-Gal4 and tub-Gal80ts. At 29℃, esgts 
drives expression of a UAS-transgene in somatic cells (green). (C) The temperature-sensitive hub cell 
driver upd 

ts comprises upd-Gal4 and tub-Gal80ts. At 29℃, upd 
ts drives expression of a UAS-transgene 

in hub cells (green). (D) The CySC- and cyst-cell-specific driver C587-Gal4 drives expression of a 
UAS-transgene in CySCs and cyst cells (green). CySC, cyst stem cell; GSC, germline stem cell; GB, 
goniablast. 
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detected in hub cells of control testis (esgts>UAS-mCherry.scramble.sponge and esgts>UAS-mCherry.
miR-let7.sponge) (Fig. 2A and B), but was found to be ectopically expressed in hub cells of the 
esgts>UAS-mCherry.miR-932.sponge testis (Fig. 2C), indicating that knockdown of miR-932 by the 
miR-932 sponge induced ectopic expression of vasa in hub cells. This suggests that miR-932 acts to 
silence vasa expression in hub cells of the wild-type testis. 

Esgts drives expression of UAS-transgenes in somatic cells, inclusive of hub cells, CySCs, and cyst 
cells (Fig. 1B). To examine whether the effect of miR932 sponge expression on vasa expression in hub 
cells is intrinsic (cell-autonomous) or extrinsic (non-cell-autonomous) in mechanism, we employed 
the hub-specific upd ts driver (Albert et al., 2018) that harbors upd-Gal4 (a hub-specific Gal4) and tub-
Gal80 ts (Fig. 1C). At three days post-shifting to 29℃, ectopic vasa expression was also observed in 
the hub cells of upd ts>UAS-mCherry.miR-932 sponge flies (Fig. 3), supporting a cell-autonomous (or 
intrinsic) effect of miR-932 sponges on expression of vasa in hub cells. Ectopic vasa expression was 
not observed in control testis (upd ts>UAS-mCherry.scramble.sponge and upd ts>UAS-mCherry.miR-let7.
sponge) (Fig. 3). Expression of the miR-932 sponge under the C587-Gal4 driver (specific to CySCs 
and cyst cells) (Fig. 1D) (Le Bras & Van Doren, 2006) did not produce ectopic expression of vasa in 
CySCs or cyst cells (Fig. 4). Thus, the miR-932 sponge, which is likely to knock down miR-932, acts 
intrinsically to facilitate ectopic expression of vasa in hub cells, but not in CySCs or cyst cells. 

CONCLUSION

We demonstrated that the specific expression of the miR-932 sponge in hub cells resulted in 
the ectopic expression of vasa. These findings suggest that vasa is inhibited by miR-932 in hub 
cells from wild-type testis. An examination of the vasa transcript did not identify any miR-932 
complementary sequences, which excludes the possibility of its direct inhibition by miR-932. 
Thus, miR-932 might target other regulators that control vasa expression in hub cells (Fig. 5). 
MiRNA target prediction software (TargetScanfly 7.2) identified 163 transcripts with miR-932 
binding sites, including histone deacetylase 4 (HDAC4) and 65 transcripts of unknown function. 
The knockdown of these targets in hub cells using UAS-RNAi lines, available in Drosophila stock 
centers from the USA, Japan, and Europe, could lead to the identification of miR-932 targets. 

Fig. 2.   Confocal images of immunostained cells in testis tips showing expression of microRNA 
sponges under the esgts driver. mCherry labels cells (green) expressing mCherry.miR.sponges. 
Vasa labels germline cells (red). FasIII labels hub cells (white). Esgts refers to esg-Gal4 and tub-
Gal80ts. Esgts>scramble.sponge, esgts>miR-let7.sponge, and esgts>miR-932.sponge respectively 
denote esgts>UAS-mCherry.scramble.sponge, esgts>UAS-mCherry.miR-let7.sponge, and esgts>UAS-
mCherry.miR-932.sponge, in which mCherry is fused to miR sponges. Testes were analyzed at three 
days post-temperature shift from 25℃ to 29℃. A representative testis is shown from three independent 
experiments. More than five animals were observed for each genotype. Vasa was not detectable in 
the hub cells of control testis (arrow, A,B), but was detected in most hub cells (92%) of esgts>miR-932.
sponge testis (arrow, C). Scale bar, 10 μm.
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Fig. 3.   Confocal images of immunostained cells in testis tips showing expression of microRNA sponges 
under the upd 

ts driver. mCherry labels cells (green) expressing mCherry.miR.sponges. Vasa labels 
germline cells (red). FasIII labels hub cells (white). Upd 

ts refers to upd-Gal4, tub-Gal80ts. upd 
ts>scramble.

sponge, upd 
ts>miR-let7.sponge, and upd 

ts>miR-932.sponge respectively denote upd 
ts>UAS-mCherry.

scramble.sponge, upd 
ts>mCherry.UAS-miR-let7.sponge, and upd 

ts>UAS-mCherry.miR-932.sponge. 
Testes were analyzed at three days post temperature shift from 25℃ to 29℃. A representative testis is 
shown from three independent experiments. More than five animals were observed for each genotype. 
Vasa was not detectable in the hub cells of control testis (arrow, top and middle rows), but was detected 
in most (95%) hub cells of upd 

ts>miR-932.sponge testis (arrow, bottom row). Scale bar, 10 μm.

Fig. 4.   Confocal images of immunostained cells in testis tips showing expression of microRNA sponges 
under the C587 driver. Chinmo labels somatic cells (green). Vasa labels germline cells (red). FasIII 
labels hub cells (white). C587>scramble.sponge, C587>miR-let7.sponge, and C587>miR-932.sponge 
respectively denote C587>UAS-mCherry.scramble.sponge, C587>UAS-mCherry.miR-let7.sponge, 
and C587>UAS-mCherry.miR-932.sponge. Testes were analyzed at three days post temperature shift 
from 25℃ to 29℃. A representative testis is shown from three independent experiments. More than five 
animals were observed for each genotype. Vasa was not detectable in the hub cells of control testis (arrow, 
top and middle rows) or in testis expressing the miR-932 sponge (arrow, bottom row). Scale bar, 10 μm.
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Future research identifying hub-cell-specific miR-932 targets with ectopic vasa expression is 
required to elucidate the mechanisms that prevent vasa expression in hub cells of the adult testis. It 
is worth noting that the expression of the miR-932 sponge in other somatic cells (CySCs and cyst 
cells) did not result in ectopic vasa expression. Thus, mechanisms other than miR-932 may exist for 
inhibiting vasa expression in CySCs and cyst cells. 
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